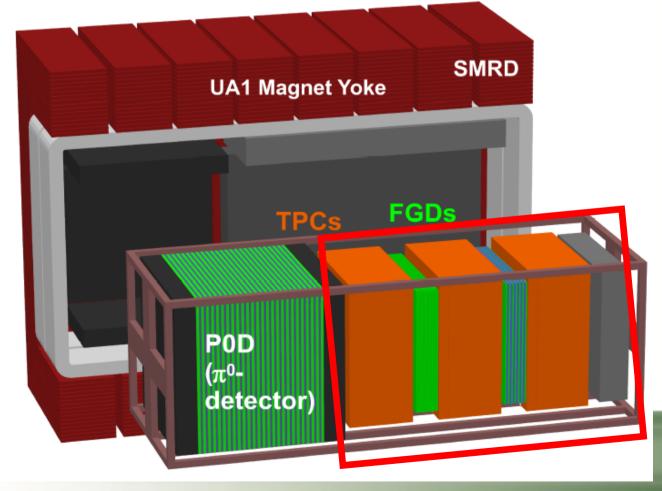


The T2K CCQE selection and prospects for CCQE, NC cross section measurements

Daniel Ruterbories for the T2K Collaboration

Nulnt2012, Rio De Janeiro Colorado State University



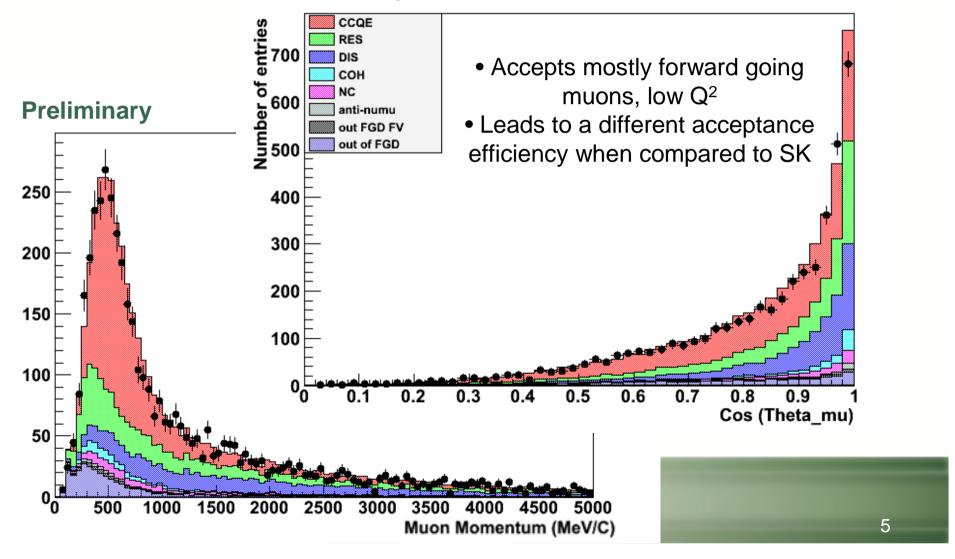
Overview

- T2K CCQE Results
 - Selection
 - Use of sample in fits for oscillations and cross-section uncertainties
 - Future work
- T2K NCE MC Study
 - Basic idea behind analysis
 - Selection criteria
 - MC predictions

T2K CCQE Results

Colorad

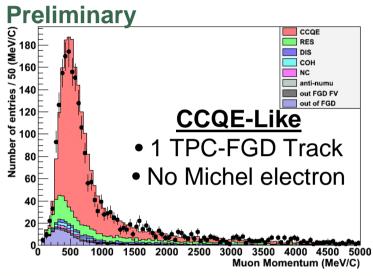
T2K CC-Inclusive Selection

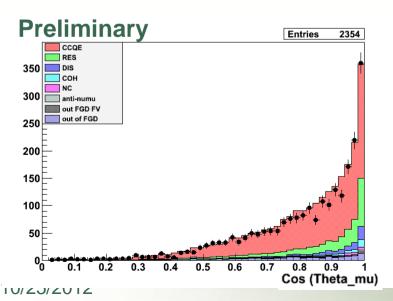

- At least 1 negatively charged track in TPC2
- Track starts within the fiducial volume of FGD1
- dE/dx compatible with muon hypothesis in TPC
- No backwards tracks allowed
- Vertex is the track start

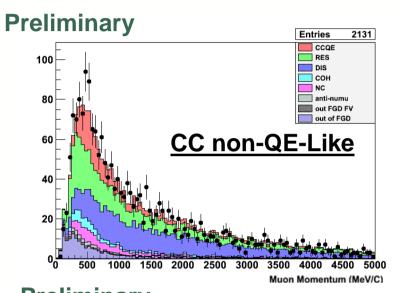
Event number: 24083 | Partition: 63 | Run number: 4200 | Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spill: 0 | SubRun number: 6 | SubRu **CC-Inclusive Candidate** TPC2 Colora FGD1 10/25/2014

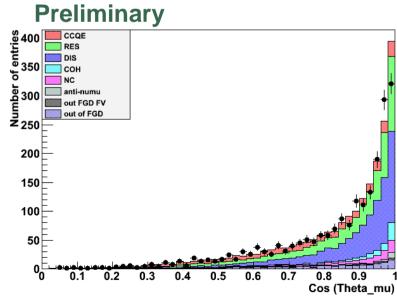
CC-Inclusive p_{μ} - θ_{μ}

Preliminary


CCQE/CC non-QE Selection


- CCQE selection
 - No second track in TPC2
 - No Michel electron in FGD1
- CC non-QE selection
 - Any extra tracks in TPC2
 - Any Michel electrons in FGD1


Event number: 24083 | Partition: 63 | Run number: 4200 | Spill: 0 | SubRun number: 6 | Time: Sun 2010-03-21 22:33:25 JST | Trigger: Beam Spil **CC non-QE Candidate** π^+ or p+? π^+ is more likely as protons don't make it out of FGD1 as often TPC2 Co FGD1 10/2



CCQE/CC non-QE samples

ND280 constraint

Neutrino flux

NA61, beam monitors, etc

External Constraints

Neutrino cross section Fits of external

data to NEUT

ND280

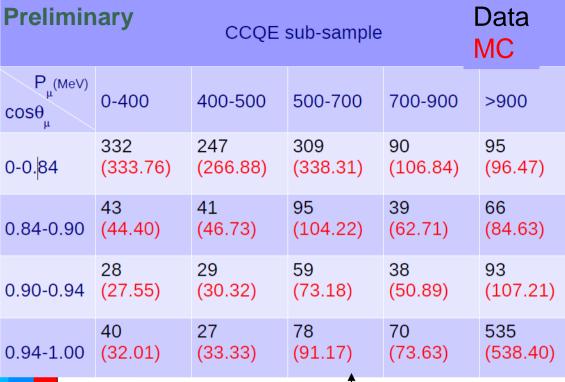
CCQE/CCnQE Samples

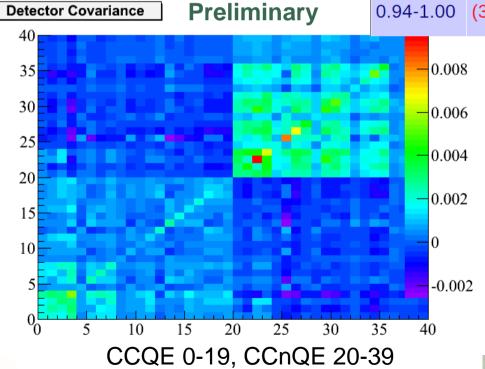
- Constrain flux uncertainties
- Constrain cross section uncertainties.
- Pass on parameters to the oscillation fit

Primary fits - MiniBooNE Cross checks - K2K, SciBooNE, **NOMAD**

ND280 Likelihood

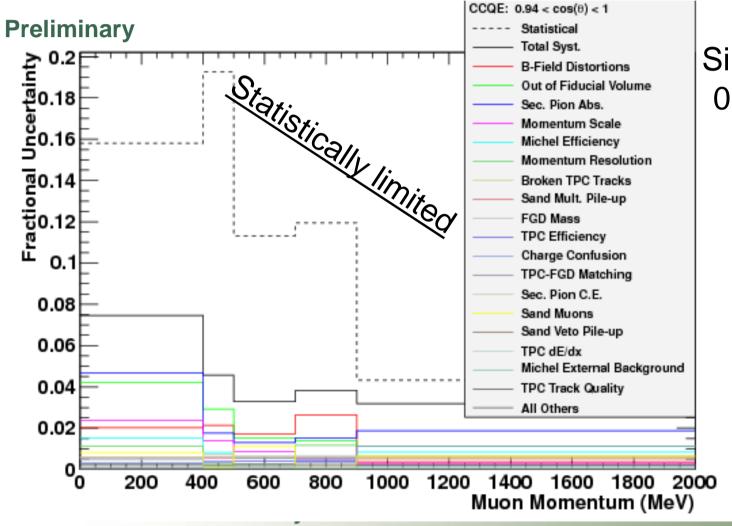
Colorado State Universit




Binning and systematics

- p-θ binning choice
 - 5 momentum bins and 4 angular bins
 - Have at least ~20 events in a bin
 - Bins are chosen to equalize bin content
 - Detector resolutions must be smaller than the bin size
- Detector systematics are passed to the fit as a covariance matrix with the same binning

Fit Inputs

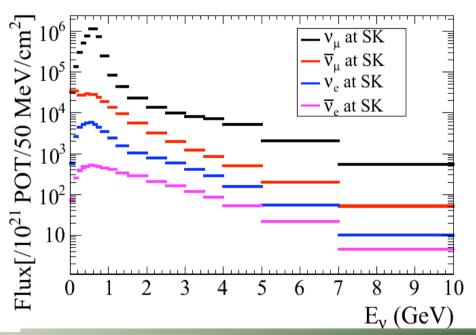


p-θ binning and event# for data and MC in the CCQE sample (Similar set for the CCnQE)

Detector Systematics

Example Detector Systematics

Single angle bin 0.94<cos(θ)<1


ND280 Constraint Flux

Neutrino flux

NA61, beam monitors, etc

Prior constraints for flux uncertainty

- Provided in the form of a covariance matrix
- Information from beam monitors and NA61
- 11 bins in E_{ν} for ν_{μ} Normalization in each bin

ND280 Constraint Cross section

	Prior Value and Uncertainty	
M _A ^{QE} (GeV)	1.21 ± 0.45 Cr	oss section paramete
CCQE Norm. 0-1.5 GeV	1.000 ± 0.110 No	ormalization
CCQE Norm. 1.5-3.5 GeV	1.00 ± 0.30 No	ormalization
CCQE Norm. >3.5 GeV	1.00 ± 0.30 No	ormalization

Neutrino cross section

Fits of external

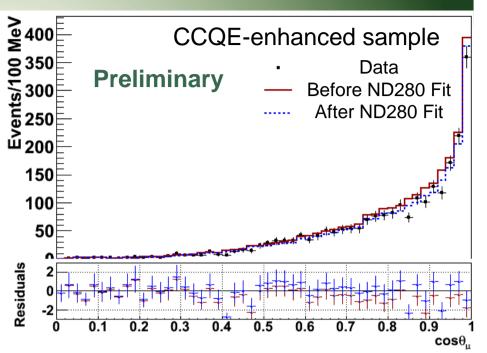
data to NEUT

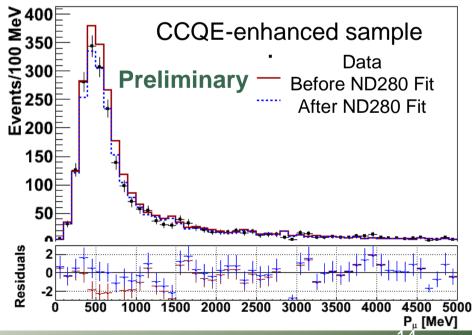
Primary fits - MiniBooNE Cross checks - K2K, SciBooNE, NOMAD

FSI Contributions

- 16 FSI parameter sets representing 1-σ contours
- Each set is reweighted and bin migration is seen in the p- θ bins of the CCQE \leftarrow CCnQE sample
- Covariance matrix is then added to the detector matrix

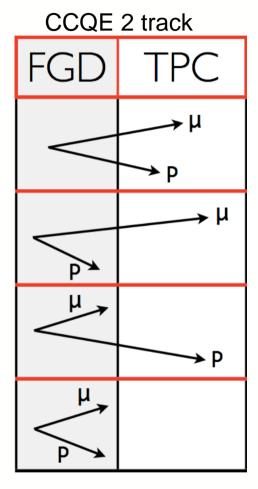
Fitter Results

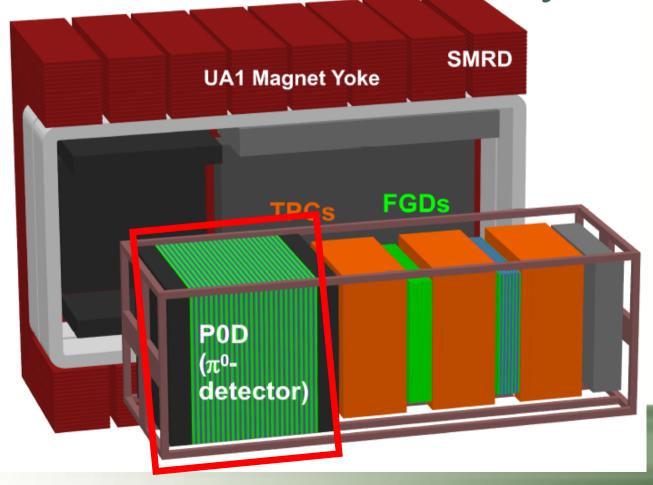

	Prior Value and Uncertainty	Fitted Value and Uncertainty
M _A ^{QE} (GeV)	1.21 ± 0.45	1.19 ± 0.19
CCQE Norm. 0-1.5 GeV	1.000 ± 0.110	0.941 ± 0.087
CCQE Norm. 1.5-3.5 GeV	1.00 ± 0.30	0.92 ± 0.23
CCQE Norm. >3.5 GeV	1.00 ± 0.30	1.18 ± 0.25


Fitted value and uncertainty are propagated to the SK $v_{_{a}}$ appearance fit

- Reduction in all uncertainties
 - •0.45 \rightarrow 0.19 for M_aQE
- Lower the normalization in two lower energy regions
 - •0->1.5 GeV ~6% reduction
 - •1.5->3.5 GeV ~8% reduction

Colorado State University

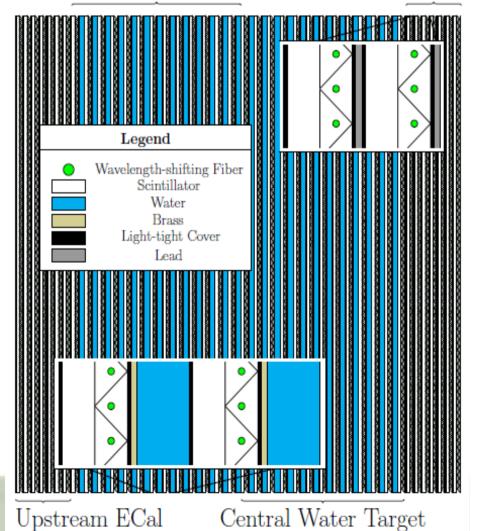



Future work

- Select CCQE based on μ⁻+ p⁺ topology
 - 2 track samples relying on FGD and TPC PIDs
- Use current CCQE sample to determine M_A^{QE} and energy dependent cross section
- Select CCN π^+ interactions (See Matt Murdoch's talk)
 - Better understanding of pion bkgs for cross section extraction

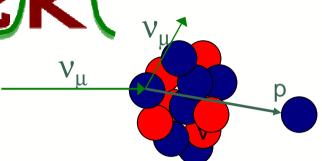
POD NCE MC Study

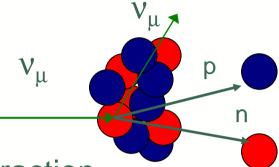
Colorad 10/25/2012



π^0 -detector (P0D)

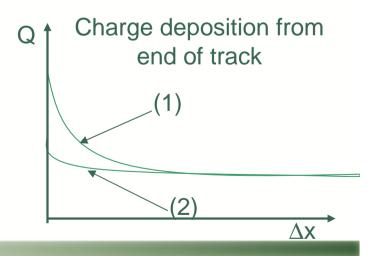
Upstream Water Target


Central ECal


- Partially active volume
- Two EM Calorimeters (ECal)
 - Scintillator + <u>lead</u>
 - Helps contain EM showers
- Two water targets (WT)
 - Scintillator + brass + water(air)
 - Removable water to provide measurement of neutrino crosssections on water
 - Brass to help initiate EM showers

Colorado State University

- Trying to extract the NCE neutrino interaction
 - Signal
 - (1) consists of a forward going proton contained in P0D
 - Background
 - (2)consists of single track CCQE
 - (3)CCQE with a backwards going μ -



Colorado State University

Analysis Goals

- Finalize event criteria for both water-in and water-out configuration
- Using data from water-in and out extract NCE cross section on water
- Can also look at other heavy nuclear targets: Zn+Cu, C, Pb (in ECal sections)
- This presentation has MC predictions for the water-in configuration scaled to data protons on target (POT)

Analysis cuts

- Require 1 reconstructed vertex with 1 3D track
- Require start of the track to be within the fiducial volume
 - 25cm from active edges in water target (XY cut)
 - Within readout planes in the water target (Z cut)
- Require the end of the track be at least 1cm from the active edge of the P0D
- Require downstream end PID of track be non-muon like
 - Current cut results in 82% of the selected tracks having a proton at the downstream end.
- Require upstream end PID of track be non-muon like
- Require 0 Michel clusters

FSI Definitions

NCE

CCQE

Other CC/NC/Non-v_µ

Outside P0D

Outside FV in P0D

NCE: Any interaction where there is a ν_{μ} but no mesons exiting the interaction nucleus. Any number of protons and/or neutrons are allowed in the final state.

CCQE: Any interaction where there is a μ - but no mesons exiting the nucleus.

CC Other: Any interaction where there is a μ⁻ but any number of mesons exiting the nucleus.

NC Other: Any interaction where there is a v_{μ} plus some number of mesons exiting the nucleus.

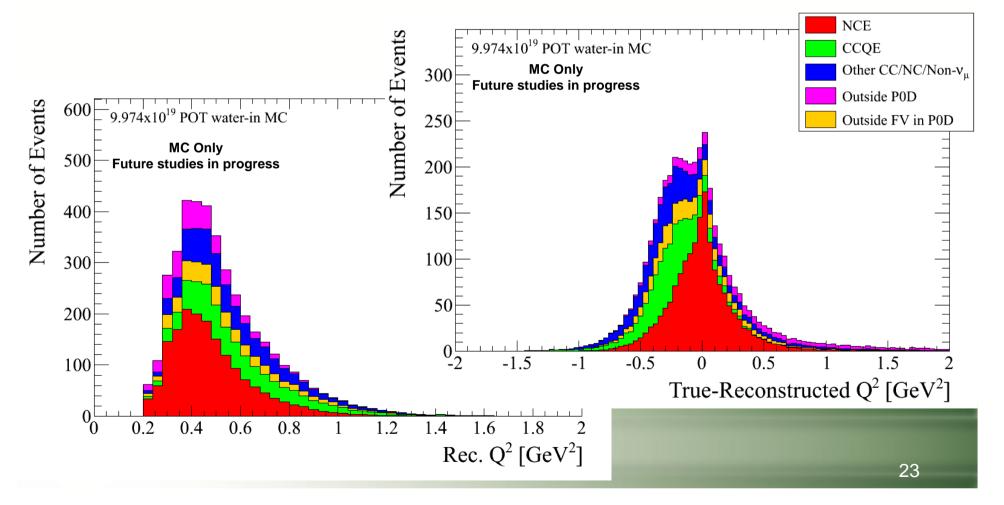
Other: Any non-v_u neutrino interaction

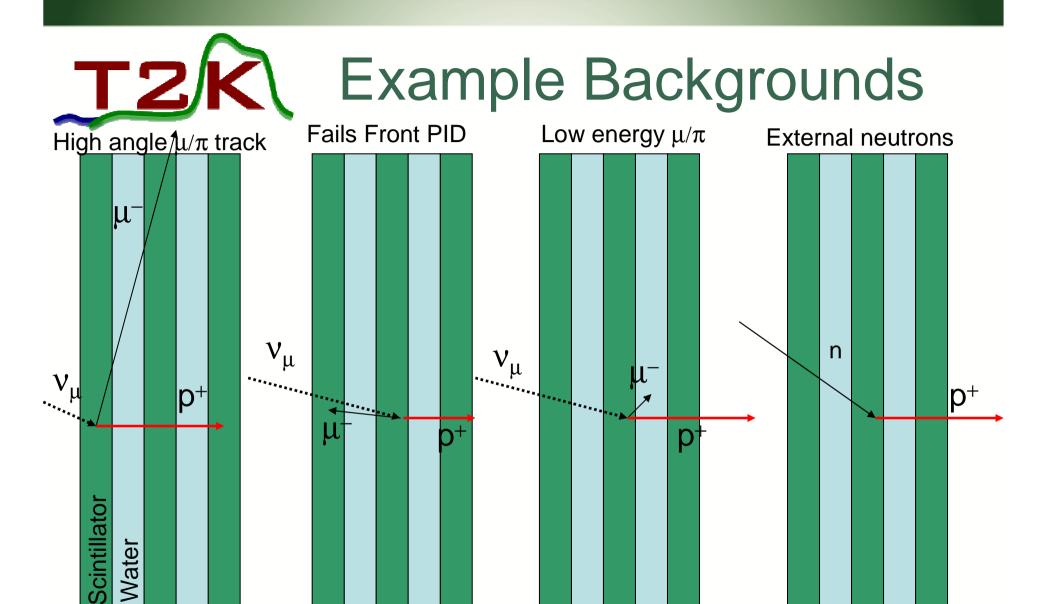
Outside P0D: Any interaction with a ν_{μ} of any interaction type that occurs outside the active volume of the P0D.

Outside FV in P0D: Any interaction with a ν_{μ} of any interaction type that occurs within the active volume, but outside the FV of the P0D.

Colorado State University

Momentum Reconstruction in the P0D


 Integration of <dE/dx>_{loss p} of material traversed according to Bethe-Bloch and other corrections



Q² reconstruction

Assumes stationary target Q² = 2m_pT_p

Colorado State University

24

POD NCE

- Current water-in selection MC predicts a 14% efficiency and 41.8% purity
 - Scaled to data, 9.974x10¹⁹ POT
 - ~4000 events with ~1700 NCE events selected
- On going studies to determine how much of the backgrounds are irreducible
- Outside neutron studies are being undertaken, should be as data driven as possible

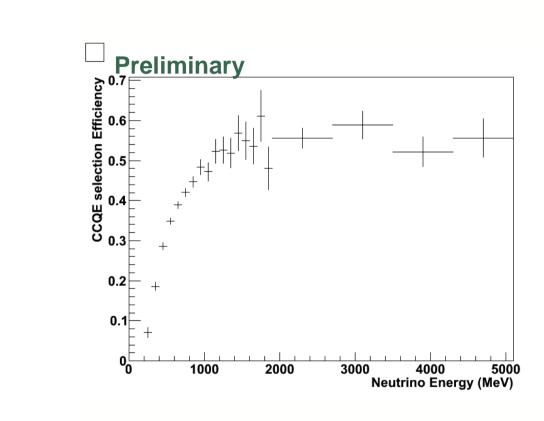
Conclusions

- Current CCQE result
 - T2K CCQE selection has been used to further constrain the flux uncertainties and cross section parameter uncertainties
- Future CCQE
 - Future work with CCQE will search for μ⁻+p⁺ topologies using TPC and FGD PIDs
 - Using the current CCQE selection fit in E_v bins for M_AQE
- Future NCE
 - Continue development of P0D based analysis
 - Study current backgrounds in selection to understand what is irreducible
 - Study outside neutron background in as much of a data driven way as possible

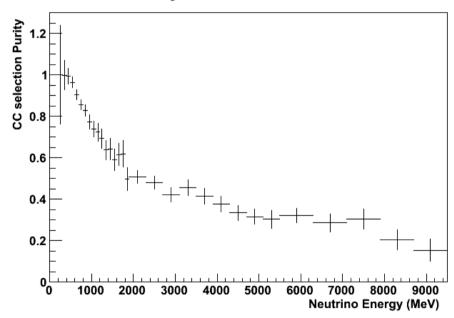
Obrigado!

CSU PRSE for travel funding

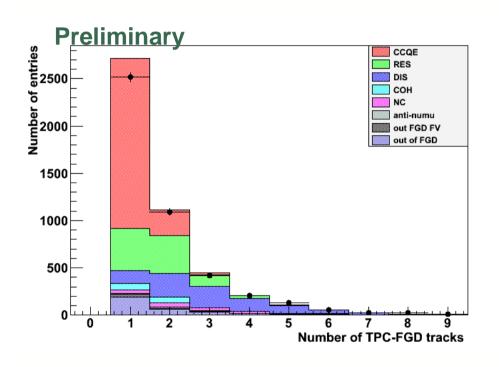
NuInt Organizers for their invitation and financial support

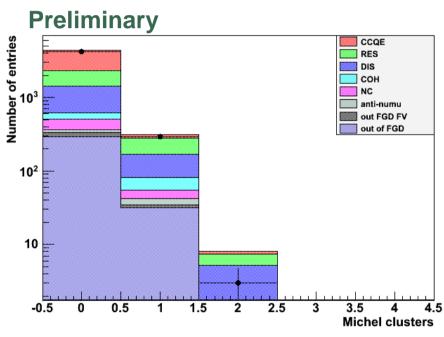


Backups


28

Eff. Pur.




Preliminary

CCQE cuts

